Sebagai latihan, misalnya kita akan menginput data hasil penelitian terdapat 18 responden penelitian sebagai berikut:

Pada contoh data latihan diatas, kita punya lima variabel (data) yang akan diinput yaitu nama responden, jenis kelamin, umur, pendidikan dan penghasilan. Mari kita definisikan masing-masing variabel sebagai berikut:
Variabel 1.
Nama Variabel: Responden
Type : String (karena variabel ini tidak berbentuk numerik)
Width: 18 (untuk data kita ini, jumlah karakter terbanyak 18)
Decimal : 0 (untuk data type string, desimal akan otomatis 0)
Label: Nama Responden
Values: None (untuk data type string, values akan otomatis none)
Missing: None (untuk data type string, missing akan otomatis none)
Column: 18 (ukuran kolom ini sesuaikan dengan jumlah karakter dari nama variabel atau maksimum karakter dari data pada variabel tersebut, mana yang paling banyak)
Align: Left (untuk data string sebaiknya dibuat rata kiri)
Measure: Nominal (untuk data string, pilih saja measure nominal)
Variabel 2.
Nama Variabel: Sex
Type : Numeric
Width: 2 (sebenarnya input data yang akan kita masukkan nanti hanya berupa kode 1 dan 2, atau hanya terdiri dari 1 karakter, tetapi width nya sebaiknya kita lebihkan 1 karakter)
Decimal : 0 (karena tidak memerlukan angka dibelakang koma)
Label: Jenis Kelamin Responden
Values: 1 = laki-laki, 2 = perempuan
Missing: None (karena informasi mengenai jenis kelamin tersedia pada semua responden)
Column: 4
Align: Rigth (untuk data numerik sebaiknya dibuat rata kanan)
Measure: Nominal (angka untuk pengkodean jenis kelamin ini, adalah termasuk data skala nominal)
Variabel 3.
Nama Variabel: Umur
Type : Numeric
Width: 3
Decimal : 0 (karena tidak memerlukan angka dibelakang koma)
Label: Umur Responden
Values: None (tidak ada pengkodean numerik untuk variabel ini)
Missing: None (karena informasi mengenai umur tersedia pada semua responden)
Column: 5
Align: Rigth (untuk data numerik sebaiknya dibuat rata kanan)
Measure: Scale (karena umur merupakan data berskala ratio)
Variabel 4.
Nama Variabel: Pendidikan
Type : Numeric
Width: 2 (karena pendidikan akan diinput dengan kode 1 – 5)
Decimal : 0 (karena tidak memerlukan angka dibelakang koma)
Label: Pendidikan Responden
Values: 1 = SD, 2= SLTP, 3= SLTA, 4= D3, 5= S1
Missing: None (karena informasi mengenai pendidikan tersedia pada semua responden)
Column: 8
Align: Rigth (untuk data numerik sebaiknya dibuat rata kanan)
Measure: Ordinal (karena pendidikan merupakan data berskala ordinal)
Variabel 5.
Nama Variabel: Pendapatan
Type : Numeric
Width: 4
Decimal : 0 (karena tidak memerlukan angka dibelakang koma)
Label: Pendapatan Responden (dalam ribuan Rp)
Values: None (tidak ada pengkodean numerik untuk variabel ini)
Missing: terdapat responden yang tidak memiliki informasi mengenai pendapatan. Untuk itu, sebagai latihan kita berikan kode 9999 untuk responden yang tidak kita dapatkan informasi pendapatannya tersebut
Column: 9
Align: Rigth (untuk data numerik sebaiknya dibuat rata kanan)
Measure: Scale(karena pendapatan merupakan data berskala ratio)